• 5-75 kVA/5-167 kVA Completely self-protected single-phase overhead transformer
5-75 kVA/5-167 kVA Completely self-protected single-phase overhead transformer
discuss personally
Model
D-50-20
Basic info
Brand Vziman
Model NO. 5-75 kVA/5-167 kVA Completely self-protected single-phase overhead transformer
Rated frequency 50/60Hz
Primary voltage 2400-19920 V
Secondary voltage 120-600 V
Capacity range 5-167 kVA
Series D-50
Product Detail

Description:

Single - phase overhead transformers with Complete Self - Protection (CSP) feature extremely outstanding performance. They integrate directly - connected primary surge arresters, MagneX arc - extinguishing chambers, or secondary circuit breakers with built - in primary voltage fuses. There is no need to install additional independent protection devices, effectively reducing installation costs. The power range of these transformers is from 5 - 75 kVA (up to 5 - 167 kVA when equipped with MagneX arc - extinguishing chambers), and they can be filled with standard electrical - grade mineral insulating oil or fire - resistant FR3 liquid.

Features:

  • Equipped with internal over - current devices and surge arresters for over - voltage protection, eliminating the need for additional external protective equipment.

  • Secondary fault and overload protection can be achieved through secondary circuit breakers with weak links or optional MagneX arc - extinguishing chambers.

  • Performance meets or exceeds industry standards, covering ANSI, NEMA, and DOE energy - efficiency standards.

  • Adopts the interlaced core design recommended by EPRI.

  • The core and coils are designed for high reliability and low field failure rates, offering options of grain - oriented steel or amorphous steel.

  • The dome cover design combined with the formed cover strip enhances withstand voltage capabilities, eliminates bushing overhang, and improves cover retention.

  • The high - voltage bushing design optimizes washer protection and sealing performance.

  • Can be configured in accordance with Rural Utilities Service (RUS) specifications.

Technical Parameters:

Specifications:

  • Meets or exceeds ANSI, NEMA and DOE2016 standards

  • IEEE, C57.12.00, C57.12.20, C57.12.31, C57.12.35, C57.12.90, C57. 91 and C57.154

  • NEMA standards, NEMA TR 1 (R2000)

  • Department of Energy Efficiency Standard, 10 CFR Part 431

  • Tank coating exceeds IEEE Std C57.12.31-2010 standard

  • Cover with a minimum dielectric strength of 8 kV

  • FR3 fluid or electrical grade mineral oil

  • Cores and coils designed for high reliability and low field failure rates: Available in grain-oriented electrical or amorphous steel

  • Heavy-duty lifting lugs and hanger brackets per ANSI requirements up to 4500 lbs

  • The transformer shall be designed in accordance with this specification and shall have an Average Winding Rise (AWR) of one of the following:

  • 55 °C, 55/65 °C, 65 °C

  • The applicable AWR rating shall be specified on the inquiry

  • The transformer shall be designed in accordance with this specification and shall have one of the following kVA ratings:

  • 5, 10, 15, 25, 37.5, 50, 75, 100, 167

  • The applicable kVA rating shall be specified on the inquiry

  • Quality System ISO 9001 certified

  • Configurable to Rural Utilities Service (RUS) specification

Know your supplier
Vziman
Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.
Main Categories
High Voltage Electrical Apparatus
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150000000
Professional Experience
3 years
Workplace
10000m²
占位
占位
Related Products
Related Knowledges
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
I. Introduction to Cable Grounding Loop CurrentCables rated 110 kV and above use a single-core structure. The alternating magnetic field generated by the operating current induces a voltage on the metallic sheath. If the sheath forms a closed circuit through the earth, a grounding loop current will flow on the metallic sheath. Excessive grounding loop current (loop current exceeding 50 A, more than 20% of the load current, or a ratio of maximum-to-minimum phase current greater than 3) not only a
Felix Spark
09/03/2025
Considerations and Recommendations for Flame-Retardant Selection of High-Voltage Cables
Considerations and Recommendations for Flame-Retardant Selection of High-Voltage Cables
1.Flame-Retardant Cable Classification StandardsThe flame-retardant standard system is divided into two main categories. The first category follows the "Classification of Burning Behavior for Electric and Optical Fiber Cables" GB 31247. Cables complying with this standard system are widely used in densely populated areas such as high-speed railways and subways. This standard imposes strict requirements on parameters such as smoke density, heat release, and total smoke production, and cables typi
James
09/03/2025
Repair of high-voltage cable metallic sheaths
Repair of high-voltage cable metallic sheaths
I. Functions of Metallic Sheaths and Necessity of RepairThe metallic sheath of high-voltage cables is a metal shielding structure laid outside the insulation layer, including types such as lead sheaths, aluminum sheaths, and steel wire armor. Its core functions include mechanical protection (resisting external impact and compression), electrochemical corrosion protection (isolating moisture and soil pollutants), electromagnetic shielding (reducing electromagnetic interference to the environment)
Felix Spark
09/03/2025
What factors need to be considered when designing a transformer?
What factors need to be considered when designing a transformer?
Transformer design is a complex process that requires consideration of multiple factors to ensure safe and efficient operation. In addition, compliance with international and local regulations is essential to guarantee that transformers meet safety and performance standards. Below are key factors to consider in transformer design and the relevant regulations to follow:Transformer Design Factors: Voltage and Frequency: Determine the input and output voltage levels and the operating frequency. The
Vziman
09/02/2025
What failure modes are possible in a transformer? How to identify and fix these failures?
What failure modes are possible in a transformer? How to identify and fix these failures?
Transformers are critical components in power systems, and various failure modes can affect their operation. Timely identification and resolution of these failure modes are essential to prevent costly downtime and ensure system reliability. Below are some common transformer failure modes, along with methods to identify and address them: Insulation FailureIdentification: Insulation failure leads to decreased insulation resistance, which can be detected through insulation resistance testing (megge
Edwiin
09/02/2025
A hybrid DC circuit breaker
A hybrid DC circuit breaker
Most DC molded-case circuit breakers use natural air arc extinction, and there are typically two arc extinguishing methods: one is conventional opening and closing, where the contacts axially stretch the arc, while the conductive circuit generates a magnetic field that bends and elongates the arc, pulling it lengthwise perpendicular to the arc axis. This not only increases the arc length but also induces lateral motion, enabling air cooling to achieve arc extinction.The other method involves the
Echo
09/02/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!